jueves, 18 de noviembre de 2010

Electricidad


La electricidad (del griego electrón, cuyo significado es ámbar) es un fenómeno físico cuyo origen son las cargas eléctricas y cuya energía se manifiesta en fenómenos mecánicos, térmicos, luminosos y químicos, entre otros1 2 3 4 , en otras palabras es el flujo de electrones. Se puede observar de forma natural en fenómenos atmosféricos, por ejemplo los rayos, que son descargas eléctricas producidas por la transferencia de energía entre la ionosfera y la superficie terrestre (proceso complejo del que los rayos solo forman una parte). Otros mecanismos eléctricos naturales los podemos encontrar en procesos biológicos, como el funcionamiento del sistema nervioso. Es la base del funcionamiento de muchas máquinas, desde pequeños electrodomésticos hasta sistemas de gran potencia como los trenes de alta velocidad, y asimismo de todos los dispositivos electrónicos.5 Además es esencial para la producción de sustancias químicas como el aluminio y el cloro.También se denomina electricidad a la rama de la física que estudia las leyes que rigen el fenómeno y a la rama de la tecnología que la usa en aplicaciones prácticas. Desde que, en 1831, Farpada descubriera la forma de producir corrientes eléctricas por inducción —fenómeno que permite transformar energía mecánica en energía eléctrica— se ha convertido en una de las formas de energía más importantes para el desarrollo tecnológico debido a su facilidad de generación y distribución y a su gran número de aplicaciones.La electricidad en una de sus manifestaciones naturales: el relámpago.La electricidad es originada por las cargas eléctricas, en reposo o en movimiento, y las interacciones entre ellas. Cuando varias cargas eléctricas están en reposo relativo se ejercen entre ellas fuerzas electrostáticas. Cuando las cargas eléctricas están en movimiento relativo se ejercen también fuerzas magnéticas. Se conocen dos tipos de cargas eléctricas: positivas y negativas. Los átomos que conforman la materia contienen partículas subatómicas positivas (protones), negativas (electrones) y neutras (neutrones). También hay partículas elementales cargadas que en condiciones normales no son estables, por lo que se manifiestan sólo en determinados procesos como los rayos cósmicos y las desintegraciones radiactivas.6La electricidad y el magnetismo son dos aspectos diferentes de un mismo fenómeno físico, denominado electromagnetismo, descrito matemáticamente por las ecuaciones de Maxwell. El movimiento de una carga eléctrica produce un campo magnético, la variación de un campo magnético produce un campo eléctrico y el movimiento acelerado de cargas eléctricas genera ondas electromagnéticas (como en las descargas de rayos que pueden escucharse en los receptores de radio AM).7Debido a las crecientes aplicaciones de la electricidad como vector energético, como base de las telecomunicaciones y para el procesamiento de información, uno de los principales desafíos contemporáneos es generarla de modo más eficiente y con el mínimo impacto ambiental.

Electricidad


La electricidad (del griego electrón, cuyo significado es ámbar) es un fenómeno físico cuyo origen son las cargas eléctricas y cuya energía se manifiesta en fenómenos mecánicos, térmicos, luminosos y químicos, entre otros1 2 3 4 , en otras palabras es el flujo de electrones. Se puede observar de forma natural en fenómenos atmosféricos, por ejemplo los rayos, que son descargas eléctricas producidas por la transferencia de energía entre la ionosfera y la superficie terrestre (proceso complejo del que los rayos solo forman una parte). Otros mecanismos eléctricos naturales los podemos encontrar en procesos biológicos, como el funcionamiento del sistema nervioso. Es la base del funcionamiento de muchas máquinas, desde pequeños electrodomésticos hasta sistemas de gran potencia como los trenes de alta velocidad, y asimismo de todos los dispositivos electrónicos.5 Además es esencial para la producción de sustancias químicas como el aluminio y el cloro.También se denomina electricidad a la rama de la física que estudia las leyes que rigen el fenómeno y a la rama de la tecnología que la usa en aplicaciones prácticas. Desde que, en 1831, Farpada descubriera la forma de producir corrientes eléctricas por inducción —fenómeno que permite transformar energía mecánica en energía eléctrica— se ha convertido en una de las formas de energía más importantes para el desarrollo tecnológico debido a su facilidad de generación y distribución y a su gran número de aplicaciones.La electricidad en una de sus manifestaciones naturales: el relámpago.La electricidad es originada por las cargas eléctricas, en reposo o en movimiento, y las interacciones entre ellas. Cuando varias cargas eléctricas están en reposo relativo se ejercen entre ellas fuerzas electrostáticas. Cuando las cargas eléctricas están en movimiento relativo se ejercen también fuerzas magnéticas. Se conocen dos tipos de cargas eléctricas: positivas y negativas. Los átomos que conforman la materia contienen partículas subatómicas positivas (protones), negativas (electrones) y neutras (neutrones). También hay partículas elementales cargadas que en condiciones normales no son estables, por lo que se manifiestan sólo en determinados procesos como los rayos cósmicos y las desintegraciones radiactivas.6La electricidad y el magnetismo son dos aspectos diferentes de un mismo fenómeno físico, denominado electromagnetismo, descrito matemáticamente por las ecuaciones de Maxwell. El movimiento de una carga eléctrica produce un campo magnético, la variación de un campo magnético produce un campo eléctrico y el movimiento acelerado de cargas eléctricas genera ondas electromagnéticas (como en las descargas de rayos que pueden escucharse en los receptores de radio AM).7Debido a las crecientes aplicaciones de la electricidad como vector energético, como base de las telecomunicaciones y para el procesamiento de información, uno de los principales desafíos contemporáneos es generarla de modo más eficiente y con el mínimo impacto ambiental.

Circuitos Electricos


Un circuito eléctrico es una red eléctrica de componentes, tales como resistencias, inductores, capacitores, fuentes, y semiconductores que tienen una trayectoria cerrada, y que a su vez, su corriente regresa al punto de origen.


Componente: Un dispositivo con dos o más terminales que puede fluir carga dentro de él. En la figura 1 se ven 8 componentes entre resistores y fuentes.

Nodo: Punto de un circuito donde concurren varios conductores distintos. A, B, D, E son nodos. C no es un nodo porque es el mismo nodo A al no existir entre ellos diferencia de potencial (VA - VC = 0).

Rama: Conjunto de todos los elementos de un circuito comprendidos entre dos nodos consecutivos. En la figura 1 se hallan siete ramales: AB por la fuente, AB por R1, AD, AE, BD, BE y DE. Obviamente, por un ramal sólo puede circular una corriente.

Malla: Un grupo de ramas que están unidas en una red y que a su vez forman un lazo.

Fuente:Componente que se encarga de convertir energía cinética en energía eléctrica. En el circuito de la figura 1 hay tres fuentes, una de intensidad, I, y dos de tensión, E1 y E2.

Conductor: Comúnmente llamado cable; es un hilo de resistencia despreciable (idealmente cero) que une los elementos para formar el circuito.

Circuitos Electricos


Un circuito eléctrico es una red eléctrica de componentes, tales como resistencias, inductores, capacitores, fuentes, y semiconductores que tienen una trayectoria cerrada, y que a su vez, su corriente regresa al punto de origen.


Componente: Un dispositivo con dos o más terminales que puede fluir carga dentro de él. En la figura 1 se ven 8 componentes entre resistores y fuentes.

Nodo: Punto de un circuito donde concurren varios conductores distintos. A, B, D, E son nodos. C no es un nodo porque es el mismo nodo A al no existir entre ellos diferencia de potencial (VA - VC = 0).

Rama: Conjunto de todos los elementos de un circuito comprendidos entre dos nodos consecutivos. En la figura 1 se hallan siete ramales: AB por la fuente, AB por R1, AD, AE, BD, BE y DE. Obviamente, por un ramal sólo puede circular una corriente.

Malla: Un grupo de ramas que están unidas en una red y que a su vez forman un lazo.

Fuente:Componente que se encarga de convertir energía cinética en energía eléctrica. En el circuito de la figura 1 hay tres fuentes, una de intensidad, I, y dos de tensión, E1 y E2.

Conductor: Comúnmente llamado cable; es un hilo de resistencia despreciable (idealmente cero) que une los elementos para formar el circuito.

Magnetismo


Líneas de fuerza magnéticas de un imán de barra, producidas por limaduras de hierro sobre papel.El magnetismo es un fenómeno físico por el que los materiales ejercen fuerzas de atracción o repulsión sobre otros materiales. Hay algunos materiales conocidos que han presentado propiedades magnéticas detectables fácilmente como el níquel, hierro, cobalto y sus aleaciones que comúnmente se llaman imanes. Sin embargo todos los materiales son influenciados, de mayor o menor forma, por la presencia de un campo magnético.El magnetismo también tiene otras manifestaciones en física, particularmente como uno de los dos componentes de la radiación electromagnética, como por ejemplo, la luz.Breve explicación del magnetismoCada electrón es, por su naturaleza, un pequeño imán (véase Momento dipolar magnético electrónico). Ordinariamente, innumerables electrones de un material están orientados aleatoriamente en diferentes direcciones, pero en un imán casi todos los electrones tienden a orientarse en la misma dirección, creando una fuerza magnética grande o pequeña dependiendo del número de electrones que estén orientados.Además del campo magnético intrínseco del electrón, algunas veces hay que contar también con el campo magnético debido al movimiento orbital del electrón alrededor del núcleo. Este efecto es análogo al campo generado por una corriente eléctrica que circula por una bobina (ver dipolo magnético).

Magnetismo


Líneas de fuerza magnéticas de un imán de barra, producidas por limaduras de hierro sobre papel.El magnetismo es un fenómeno físico por el que los materiales ejercen fuerzas de atracción o repulsión sobre otros materiales. Hay algunos materiales conocidos que han presentado propiedades magnéticas detectables fácilmente como el níquel, hierro, cobalto y sus aleaciones que comúnmente se llaman imanes. Sin embargo todos los materiales son influenciados, de mayor o menor forma, por la presencia de un campo magnético.El magnetismo también tiene otras manifestaciones en física, particularmente como uno de los dos componentes de la radiación electromagnética, como por ejemplo, la luz.Breve explicación del magnetismoCada electrón es, por su naturaleza, un pequeño imán (véase Momento dipolar magnético electrónico). Ordinariamente, innumerables electrones de un material están orientados aleatoriamente en diferentes direcciones, pero en un imán casi todos los electrones tienden a orientarse en la misma dirección, creando una fuerza magnética grande o pequeña dependiendo del número de electrones que estén orientados.Además del campo magnético intrínseco del electrón, algunas veces hay que contar también con el campo magnético debido al movimiento orbital del electrón alrededor del núcleo. Este efecto es análogo al campo generado por una corriente eléctrica que circula por una bobina (ver dipolo magnético).

Electro Magnetismo

El electromagnetismo es una rama de la Física que estudia y unifica los fenómenos eléctricos y magnéticos en una sola teoría, cuyos fundamentos fueron sentados por Michael Faraday y formulados por primera vez de modo completo por James Clerk Maxwell. La formulación consiste en cuatro ecuaciones diferenciales vectoriales que relacionan el campo eléctrico, el campo magnético y sus respectivas fuentes materiales (corriente eléctrica, polarización eléctrica y polarización magnética), conocidas como ecuaciones de Maxwell.El electromagnetismo es una teoría de campos; es decir, las explicaciones y predicciones que provee se basan en magnitudes físicas vectoriales dependientes de la posición en el espacio y del tiempo. El electromagnetismo describe los fenómenos físicos macroscópicos en los cuales intervienen cargas eléctricas en reposo y en movimiento, usando para ello campos eléctricos y magnéticos y sus efectos sobre las sustancias sólidas, líquidas y gaseosas. Por ser una teoría macroscópica, es decir, aplicable sólo a un número muy grande de partículas y a distancias grandes respecto de las dimensiones de éstas, el Electromagnetismo no describe los fenómenos atómicos y moleculares, para los que es necesario usar la Mecánica Cuántica.HistoriaArtículo principal: Historia del electromagnetismoDesde la antigua Grecia se conocían los fenómenos magnéticos y eléctricos pero no es hasta inicios del siglo XVII donde se comienza a realizar experimentos y a llegar a conclusiones científicas de estos fenómenos.1 Durante estos dos siglos, XVII y XVIII, grandes hombres de ciencia como William Gilbert, Otto von Güiriche, Stephen Gray, Benjamín Franklin, Alessandri Volta entre otros estuvieron investigando estos dos fenómenos de manera separada y llegando a conclusiones coherentes con sus experimentos.Las ahora llamadas ecuaciones de Maxwell demostraban que los campos eléctricos y los campos magnéticos eran manifestaciones de un solo campo electromagnético. Además describía la naturaleza ondulatoria de la luz, mostrándola como una onda electromagnética.2 Con una sola teoría consistente que describía estos dos fenómenos antes separados, los físicos pudieron realizar varios experimentos prodigiosos e inventos muy útiles como la bombilla eléctrica por Thomas Alba Edison o el generador de corriente alterna por Nicola Tesla.3 El éxito predicativo de la teoría de Maxwell y la búsqueda de una interpretación coherente de sus implicaciones, fue lo que llevó a Albert Einstein a formular su teoría de la relatividad que se apoyaba en algunos resultados previos de Hendir Antón Lorenzo y Henri Poincaré.En la primera mitad del siglo XX, con el advenimiento de la mecánica cuántica, el electromagnetismo tenía que mejorar su formulación con el objetivo de que fuera coherente con la nueva teoría. Esto se logró en la década de 1940 cuando se completó una teoría cuántica electromagnética o mejor conocida como electrodinámica cuántica.

Electro Magnetismo

El electromagnetismo es una rama de la Física que estudia y unifica los fenómenos eléctricos y magnéticos en una sola teoría, cuyos fundamentos fueron sentados por Michael Faraday y formulados por primera vez de modo completo por James Clerk Maxwell. La formulación consiste en cuatro ecuaciones diferenciales vectoriales que relacionan el campo eléctrico, el campo magnético y sus respectivas fuentes materiales (corriente eléctrica, polarización eléctrica y polarización magnética), conocidas como ecuaciones de Maxwell.El electromagnetismo es una teoría de campos; es decir, las explicaciones y predicciones que provee se basan en magnitudes físicas vectoriales dependientes de la posición en el espacio y del tiempo. El electromagnetismo describe los fenómenos físicos macroscópicos en los cuales intervienen cargas eléctricas en reposo y en movimiento, usando para ello campos eléctricos y magnéticos y sus efectos sobre las sustancias sólidas, líquidas y gaseosas. Por ser una teoría macroscópica, es decir, aplicable sólo a un número muy grande de partículas y a distancias grandes respecto de las dimensiones de éstas, el Electromagnetismo no describe los fenómenos atómicos y moleculares, para los que es necesario usar la Mecánica Cuántica.HistoriaArtículo principal: Historia del electromagnetismoDesde la antigua Grecia se conocían los fenómenos magnéticos y eléctricos pero no es hasta inicios del siglo XVII donde se comienza a realizar experimentos y a llegar a conclusiones científicas de estos fenómenos.1 Durante estos dos siglos, XVII y XVIII, grandes hombres de ciencia como William Gilbert, Otto von Güiriche, Stephen Gray, Benjamín Franklin, Alessandri Volta entre otros estuvieron investigando estos dos fenómenos de manera separada y llegando a conclusiones coherentes con sus experimentos.Las ahora llamadas ecuaciones de Maxwell demostraban que los campos eléctricos y los campos magnéticos eran manifestaciones de un solo campo electromagnético. Además describía la naturaleza ondulatoria de la luz, mostrándola como una onda electromagnética.2 Con una sola teoría consistente que describía estos dos fenómenos antes separados, los físicos pudieron realizar varios experimentos prodigiosos e inventos muy útiles como la bombilla eléctrica por Thomas Alba Edison o el generador de corriente alterna por Nicola Tesla.3 El éxito predicativo de la teoría de Maxwell y la búsqueda de una interpretación coherente de sus implicaciones, fue lo que llevó a Albert Einstein a formular su teoría de la relatividad que se apoyaba en algunos resultados previos de Hendir Antón Lorenzo y Henri Poincaré.En la primera mitad del siglo XX, con el advenimiento de la mecánica cuántica, el electromagnetismo tenía que mejorar su formulación con el objetivo de que fuera coherente con la nueva teoría. Esto se logró en la década de 1940 cuando se completó una teoría cuántica electromagnética o mejor conocida como electrodinámica cuántica.

Leyes De La Fisica


Las Leyes de Newton, también conocidas como Leyes del movimiento de Newton, son tres principios a partir de los cuales se explican la mayor parte de los problemas planteados por la dinamica, en particular aquellos relativos al movimiento de los cuerpos. Revolucionaron los conceptos básicos de la física y el movimiento de los cuerpos en el universo, en tanto que
constituyen los cimientos no sólo de la dinámica clásica sino también de la física clásica en general. Aunque incluyen ciertas definiciones y en cierto sentido pueden verse como axiomas, Newton afirmó que estaban basadas en observaciones y experimentos cuantitativos; ciertamente no pueden derivarse a partir de otras relaciones más básicas. La demostración de su validez radica en sus predicciones... La validez de esas predicciones fue verificada en todos y cada uno de los casos durante más de dos siglos.
En concreto, la relevancia de estas leyes radica en dos aspectos:
Por un lado, constituyen, junto con la transformación de Galileo, la base de la mecánica clásica;
Por otro, al combinar estas leyes con la Ley de la gravitación universal, se pueden deducir y explicar las Leyes de Kepler sobre el movimiento planetario.
Así, las Leyes de Newton permiten explicar tanto el movimiento de los astros, como los movimientos de los proyectiles artificiales creados por el ser humano, así como toda la mecánica de funcionamiento de las máquinas.
Su formulación matemática fue publicada por Isaac Newton en 1687 en su obra Philosophiae Naturalis Principia Mathematica.
No obstante, la dinámica de Newton, también llamada dinámica clásica, sólo se cumple en los sistemas de referencia inerciales; es decir, sólo es aplicable a cuerpos cuya velocidad dista considerablemente de la velocidad de la luz (que no se acerquen a los 300,000 km/s); la razón estriba en que cuanto más cerca esté un cuerpo de alcanzar esa velocidad (lo que ocurriría en los sistemas de referencia no-inerciales), más posibilidades hay de que incidan sobre el mismo una serie de fenómenos denominados efectos relativistas o fuerzas ficticias, que añaden términos suplementarios capaces de explicar el movimiento de un sistema cerrado de partículas clásicas que interactúan entre sí. El estudio de estos efectos (aumento de la masa y contracción de la longitud, fundamentalmente) corresponde a la teoría de la relatividad especial, enunciada por Albert Einstein en 1905.

Leyes De La Fisica


Las Leyes de Newton, también conocidas como Leyes del movimiento de Newton, son tres principios a partir de los cuales se explican la mayor parte de los problemas planteados por la dinamica, en particular aquellos relativos al movimiento de los cuerpos. Revolucionaron los conceptos básicos de la física y el movimiento de los cuerpos en el universo, en tanto que
constituyen los cimientos no sólo de la dinámica clásica sino también de la física clásica en general. Aunque incluyen ciertas definiciones y en cierto sentido pueden verse como axiomas, Newton afirmó que estaban basadas en observaciones y experimentos cuantitativos; ciertamente no pueden derivarse a partir de otras relaciones más básicas. La demostración de su validez radica en sus predicciones... La validez de esas predicciones fue verificada en todos y cada uno de los casos durante más de dos siglos.
En concreto, la relevancia de estas leyes radica en dos aspectos:
Por un lado, constituyen, junto con la transformación de Galileo, la base de la mecánica clásica;
Por otro, al combinar estas leyes con la Ley de la gravitación universal, se pueden deducir y explicar las Leyes de Kepler sobre el movimiento planetario.
Así, las Leyes de Newton permiten explicar tanto el movimiento de los astros, como los movimientos de los proyectiles artificiales creados por el ser humano, así como toda la mecánica de funcionamiento de las máquinas.
Su formulación matemática fue publicada por Isaac Newton en 1687 en su obra Philosophiae Naturalis Principia Mathematica.
No obstante, la dinámica de Newton, también llamada dinámica clásica, sólo se cumple en los sistemas de referencia inerciales; es decir, sólo es aplicable a cuerpos cuya velocidad dista considerablemente de la velocidad de la luz (que no se acerquen a los 300,000 km/s); la razón estriba en que cuanto más cerca esté un cuerpo de alcanzar esa velocidad (lo que ocurriría en los sistemas de referencia no-inerciales), más posibilidades hay de que incidan sobre el mismo una serie de fenómenos denominados efectos relativistas o fuerzas ficticias, que añaden términos suplementarios capaces de explicar el movimiento de un sistema cerrado de partículas clásicas que interactúan entre sí. El estudio de estos efectos (aumento de la masa y contracción de la longitud, fundamentalmente) corresponde a la teoría de la relatividad especial, enunciada por Albert Einstein en 1905.

Fuentes De Poder

Fuente de alimentación

Fuentes de alimentación externas.En electrónica, una fuente de alimentación es un dispositivo que convierte la tensión alterna de la red de suministro, en una o varias tensiones, prácticamente continuas, que alimentan los distintos circuitos del aparato electrónico al que se conecta (ordenador, televisor, impresora, router, etc.).Las fuentes de alimentación, para dispositivos electrónicos, pueden clasificarse básicamente como fuentes de alimentación lineal y conmutada. Las lineales tienen un diseño relativamente simple, que puede llegar a ser más complejo cuanto mayor es la corriente que deben suministrar, pero sin embargo su regulación de tensión es poco eficiente. Una fuente conmutada, de la misma potencia que una lineal, será más pequeña y normalmente más eficiente pero será más complejo y por tanto más susceptible a averías.Las fuentes lineales siguen el esquema: transformador, rectificador, filtro, regulación y salida.En primer lugar el transformador adapta los niveles de tensión y proporciona aislamiento galvánico. El circuito que convierte la corriente alterna en continua se llama rectificador, después suelen llevar un circuito que disminuye el rizado como un filtro de condensador. La regulación, o estabilización de la tensión a un valor establecido, se consigue con un componente denominado regulador de tensión. La salida puede ser simplemente un condensador.Una fuente conmutada es un dispositivo electrónico que transforma energía eléctrica mediante transistores en conmutación. Mientras que un regulador de tensión utiliza transistores polarizados en su región activa de amplificación, las fuentes conmutadas utilizan los mismos conmutándolos activamente a altas frecuencias (20-100 Kilociclos típicamente) entre corte (abiertos) y saturación (cerrados). La forma de onda cuadrada resultante es aplicada a transformadores con núcleo de ferrita (Los núcleos de hierro no son adecuados para estas altas frecuencias) para obtener uno o varios voltajes de salida de corriente alterna (CA) que luego son rectificados (Con diodos rápidos)y filtrados (Inductores y capacitores)para obtener los voltajes de salida de corriente continua (CC). Las ventajas de este método incluyen menor tamaño y peso del núcleo, mayor eficiencia y por lo tanto menor calentamiento. Las desventajas comparándolas con fuentes lineales es que son mas complejas y generan ruido eléctrico de alta frecuencia que debe ser cuidadosamente minimizado para no causar interferencias a equipos próximos a estas fuentes.Las fuentes conmutadas tienen por esquema: rectificador, conmutador, transformador, otro rectificador y salida.La regulación se obtiene con el conmutador, normalmente un circuito PWM (Pulse Whist Modulación) que cambia el ciclo de trabajo. Aquí las funciones del transformador son las mismas que para fuentes lineales pero su posición es diferente. El segundo rectificador convierte la señal alterna pulsante que llega del transformador en un valor continuo. La salida puede ser también un filtro de condensador o uno del tipo LC.Las ventajas de las fuentes lineales son una mejor regulación, velocidad y mejores características EMC. Por otra parte las conmutadas obtienen un mejor rendimiento, menor coste y tamaño.Una especificación fundamental de las fuentes de alimentación es el rendimiento, que se define como la potencia total de salida entre la potencia activa de entrada. Como se ha dicho antes, las fuentes conmutadas son mejores en este aspecto.El factor de potencia es la potencia activa entre la potencia aparente de entrada. Es una medida de la calidad de la corriente.Aparte de disminuir lo más posible el rizado, la fuente debe mantener la tensión de salida al voltaje solicitado independientemente de las oscilaciones de la línea, regulación de línea o de la carga requerida por el circuito, regulación de carga.Entre las fuentes de alimentación alternas, tenemos aquellas en donde la potencia que se entrega a la carga está siendo controlada por transistores, los cuales son controlados en fase para poder entregar la potencia requerida a la carga.

Fuentes De Poder

Fuente de alimentación

Fuentes de alimentación externas.En electrónica, una fuente de alimentación es un dispositivo que convierte la tensión alterna de la red de suministro, en una o varias tensiones, prácticamente continuas, que alimentan los distintos circuitos del aparato electrónico al que se conecta (ordenador, televisor, impresora, router, etc.).Las fuentes de alimentación, para dispositivos electrónicos, pueden clasificarse básicamente como fuentes de alimentación lineal y conmutada. Las lineales tienen un diseño relativamente simple, que puede llegar a ser más complejo cuanto mayor es la corriente que deben suministrar, pero sin embargo su regulación de tensión es poco eficiente. Una fuente conmutada, de la misma potencia que una lineal, será más pequeña y normalmente más eficiente pero será más complejo y por tanto más susceptible a averías.Las fuentes lineales siguen el esquema: transformador, rectificador, filtro, regulación y salida.En primer lugar el transformador adapta los niveles de tensión y proporciona aislamiento galvánico. El circuito que convierte la corriente alterna en continua se llama rectificador, después suelen llevar un circuito que disminuye el rizado como un filtro de condensador. La regulación, o estabilización de la tensión a un valor establecido, se consigue con un componente denominado regulador de tensión. La salida puede ser simplemente un condensador.Una fuente conmutada es un dispositivo electrónico que transforma energía eléctrica mediante transistores en conmutación. Mientras que un regulador de tensión utiliza transistores polarizados en su región activa de amplificación, las fuentes conmutadas utilizan los mismos conmutándolos activamente a altas frecuencias (20-100 Kilociclos típicamente) entre corte (abiertos) y saturación (cerrados). La forma de onda cuadrada resultante es aplicada a transformadores con núcleo de ferrita (Los núcleos de hierro no son adecuados para estas altas frecuencias) para obtener uno o varios voltajes de salida de corriente alterna (CA) que luego son rectificados (Con diodos rápidos)y filtrados (Inductores y capacitores)para obtener los voltajes de salida de corriente continua (CC). Las ventajas de este método incluyen menor tamaño y peso del núcleo, mayor eficiencia y por lo tanto menor calentamiento. Las desventajas comparándolas con fuentes lineales es que son mas complejas y generan ruido eléctrico de alta frecuencia que debe ser cuidadosamente minimizado para no causar interferencias a equipos próximos a estas fuentes.Las fuentes conmutadas tienen por esquema: rectificador, conmutador, transformador, otro rectificador y salida.La regulación se obtiene con el conmutador, normalmente un circuito PWM (Pulse Whist Modulación) que cambia el ciclo de trabajo. Aquí las funciones del transformador son las mismas que para fuentes lineales pero su posición es diferente. El segundo rectificador convierte la señal alterna pulsante que llega del transformador en un valor continuo. La salida puede ser también un filtro de condensador o uno del tipo LC.Las ventajas de las fuentes lineales son una mejor regulación, velocidad y mejores características EMC. Por otra parte las conmutadas obtienen un mejor rendimiento, menor coste y tamaño.Una especificación fundamental de las fuentes de alimentación es el rendimiento, que se define como la potencia total de salida entre la potencia activa de entrada. Como se ha dicho antes, las fuentes conmutadas son mejores en este aspecto.El factor de potencia es la potencia activa entre la potencia aparente de entrada. Es una medida de la calidad de la corriente.Aparte de disminuir lo más posible el rizado, la fuente debe mantener la tensión de salida al voltaje solicitado independientemente de las oscilaciones de la línea, regulación de línea o de la carga requerida por el circuito, regulación de carga.Entre las fuentes de alimentación alternas, tenemos aquellas en donde la potencia que se entrega a la carga está siendo controlada por transistores, los cuales son controlados en fase para poder entregar la potencia requerida a la carga.

Electrónica analógica

Transistor bipolar, componente muy usado en sistemas analógicos.La electrónica analógica es una parte de la electrónica que estudia los sistemas en los cuales sus variables; tensión, corriente, ..., varian de una forma continua en el tiempo, pudiendo tomar infinitos valores (teóricamente al menos). En contraposición se encuentra la electrónica digital donde las variables solo pueden tomar valores discretos, teniendo siempre un estado perfectamente definido.Pongamos un ejemplo:Disponemos de una medida real concreta; la longitud total de un coche, por ejemplo.En un sistema digital esta medida podría ser de 4 metros o de 4 metros y 23 centímetros. Podremos darle la precisión que queramos pero siempre serán cantidades enterasEn un sistema analógico la medida seria la real; es decir 4,233648596... en teoría hasta que llegásemos a la mínima cantidad de materia existente (siempre que el sistema de medida sea lo suficientemente exacto).Contenido [ocultar]1 Historia2 Véase también3 Enlaces externos4 Referencias[editar] HistoriaSe considera que la electrónica comenzó con el diodo de vacío inventado por John Ambrose Fleming en 1904. El funcionamiento de este dispositivo está basado en el efecto Edison. Edison fue el primero que observó en 1883 la emisión termoiónica, al colocar una lámina dentro de una bombilla para evitar el ennegrecimiento que producía en la ampolla de vidrio el filamento de carbón. Cuando se polarizaba positivamente la lámina metálica respecto al filamento, se producía una pequeña corriente entre el filamento y la lámina. Este hecho se producía porque los electrones de los átomos del filamento, al recibir una gran cantidad de energía en forma de calor, escapaban de la atracción del núcleo (emisión termoiónica) y, atravesando el espacio vacío dentro de la bombilla, eran atraídos por la polaridad positiva de la lámina.El otro gran paso lo dio Lee De Forest cuando inventó el triodo en 1906. Este dispositivo es básicamente como el diodo de vacío, pero se le añadió una rejilla de control situada entre el cátodo y la placa con el objeto de modificar la nube electrónica del cátodo, variando así la corriente de placa. Esto fue muy importante para que se fabricaran los primeros amplificadores de sonido, receptores de radio, televisores, etc.Conforme pasaba el tiempo las válvulas de vacío se fueron perfeccionando y mejorando, apareciendo otros tipos, como los tetrodos (válvulas de cuatro electrodos), los pentodos (cinco electrodos), otras válvulas para aplicaciones de alta potencia, etc. Dentro de los perfeccionamientos de las válvulas se encontraba su miniaturización.Pero fue definitivamente con el transistor, aparecido de la mano de Bardeen y Brattain de la Bell Telephone en 1948, cuando se permitió aún una mayor miniaturización de los aparatos tales como las radios. El transistor de unión apareció algo más tarde en 1949, este es el dispositivo utilizado actualmente para la mayoría de las aplicaciones de la electrónica analógica. Sus ventajas respecto a las válvulas son entre otras: menor tamaño y fragilidad, mayor rendimiento energético, menores tensiones de alimentación, etc. El transistor no funciona en vacío como las válvulas, sino en un estado sólido semiconductor (silicio), razón por la que no necesitan centenares de voltios de tensión para funcionar.A pesar de la expansión de los semiconductores, todavía se siguen utilizando, en pequeños círculos audiófilos, las válvulas porque parecen ofrecer unas cualidades sonoras que no muestran los transistores.El transistor tiene tres terminales, el emisor, la base y el colector, se asemeja a un triodo, la base sería la rejilla de control, el emisor el cátodo, y el colector la placa, polarizando adecuadamente estos tres terminales, se consigue controlar una gran corriente de colector a partir de una pequeña corriente de base.El diodo de vacío fue desbancado más rápidamente que las válvulas amplificadoras por el diodo semiconductor que se empezó a utilizar en 1920, aunque se conocía de más antiguo por ser utilizado en el receptor de radio a galena, un diodo que estaba formado por cristal de galena.

Blackboard

Blackboard Inc. (NASDAQ: BBBB) es una compañía de software con sede en Washington, DC, EE. UU. Fundada en 1997, Blackboard se formó como firma consultora con un contrato con la organización sin fines de lucro IMS Global Learning Consortium (http://www.imsglobal.org). En 1998, Blackboard LLC se fusionó con CourseInfo LLC, una pequeña compañía proveedora de programas de administración de cursos originaria de la Universidad de Cornell. La nueva compañía se conoció como Blackboard Inc. La primera línea de productos de aprendizaje en línea (e-learning) fue llamada Blackboard Courseinfo, pero luego el nombre Courseinfo fue descontinuado en el 2000. Blackboard se convirtió en una compañía con acciones al público en junio de 2004. En octubre de 2005, Blackboard anunció planes de fusión con WebCT, una compañía rival de programas de aprendizaje en línea. La fusión se completó el 28 de febrero de 2006, la empresa resultante retuvó el nombre de Blackboard, dirigida por el President y CEO de BlackBoard, Michael Chasen.A fecha del 2005, Blackboard desarrolló y licenció aplicaciones de programas empresariales y servicios relacionados a más de 2200 instituciones educativas en más de 60 países. Estas instituciones usan el programa de BlackBoard para administrar aprendizaje en línea (e-learning), procesamiento de transacciones, comercio electrónico (e-commerce), y manejo de comunidades en línea (online).La línea de productos Blackboard incluye:* Blackboard Academic Suite consiste de:o Blackboard Learning System, un entorno de manejo de cursos. Actualmente esta plataforma está siendo usada a nivel mundial por diversas instituciones relacionadas con la educación, tal es el caso del Servicio Nacional de Aprendizaje SENA en Colombia. También la utilizan la Universidad Nacional de Colombia, la Universidad de los andes y la Pontificia Universidad Javeriana. En México tiene presencia desde hace más de 10 años en diversas universidades e instituciones como el Instituto Tecnológico y de Estudios Superiores de Monterrey (ITESM).o Blackboard Community System, para comunidades en línea y sistemas de portaleso Blackboard Content System, un sistema para el manejo de contenido* Blackboard Commerce Suite, consiste de:o Blackboard Transaction System, un sistema de procesamiento de transacciones (tarjeta débito) para identificaciones de universidadeso Blackboard Community System, Un sistema para transacciones de comercio electrónicoo Bb One, una red comercial para procesar transacciones de tarjetas débito patrocinadas por BlackBoardBlackboard también tiene una arquitectura abierta, llamada Building Blocks (http://buildingblocks.blackboard.com), que puede se usar para extender la funcionalidad de los productos Blackboard o integrarlos con otros sistemas de programas.

lunes 1 de noviembre de 2010

WEB 2.0

El término Web 2.0 (2004–presente) está comúnmente asociado con un fenómeno social, basado en la interacción que se logra a partir de diferentes aplicaciones en la web, que facilitan el compartir información, la interoperabilidad, el diseño centrado en el usuario o D.C.U. y la colaboración en la World Wide Web. Ejemplos de la Web 2.0 son las comunidades web, los servicios web, las aplicaciones Web, los servicios de red social, los servicios de alojamiento de videos, las wikis, blogs, mashups y folcsonomías. Un sitio Web 2.0 permite a sus usuarios interactuar con otros usuarios o cambiar contenido del sitio web, en contraste a sitios web no-interactivos donde los usuarios se limitan a la visualización pasiva de información que se les proporciona.
La Web 2.0 esta asociada estrechamente con (Tim O'Reilly), debido a la conferencia sobre la Web 2.0 de O'Reilly Media en 2004. Aunque el término sugiere una nueva versión de la World Wide Web, no se refiere a una actualización de las especificaciones técnicas de la web, sino más bien a cambios acumulativos en la forma en la que desarrolladores de software y usuarios finales utilizan la Web. El hecho de que la Web 2.0 es cualitativamente diferente de las tecnologías web anteriores ha sido cuestionado por el creador de la World Wide Web Tim Berners-Lee, quien califico al termino como "tan solo una jerga"- precisamente porque tenía la intención de que la Web incorporase estos valores en el primer lugar.


La red original, llamada Web 1.0, se basaba en páginas estáticas programadas en HTML (Hyper Text Mark Language) que no eran actualizadas frecuentemente. El éxito de las .com dependía de webs más dinámicas (a veces llamadas Web 1.5) donde los CMS Sistema de gestión de contenidos (Content Management System en inglés, abreviado CMS) servían páginas HTML dinámicas creadas al vuelo desde una actualizada base de datos. En ambos sentidos, el conseguir hits (visitas) y la estética visual eran considerados como factores importantes.
Los teóricos de la aproximación a la Web 2.0 creen que el uso de la web está orientado a la interacción y redes sociales, que pueden servir contenido que explota los efectos de las redes, creando o no webs interactivas y visuales. Es decir, los sitios Web 2.0 actúan más como puntos de encuentro, o webs dependientes de usuarios, que como webs tradicionales.


Para compartir en la Web 2.0 se utilizan una serie de herramientas, entre las que se pueden destacar:
Blogs: La blogosfera es el conjunto de blogs que hay en Internet. Un blog es un espacio web personal en el que su autor (puede haber varios autores autorizados) puede escribir cronológicamente artículos, noticias...(con imágenes y enlaces), pero además es un espacio colaborativo donde los lectores también pueden escribir sus comentarios a cada uno de los artículos (entradas/post) que ha realizado el autor. Hay diversos servidores de weblog gratuitos como por ejemplo:
Blogger.
Wordpress.
Wikis: En hawaiano "wikiwiki " significa: rápido, informal. Una wiki es un espacio web corporativo, organizado mediante una estructura hipertextual de páginas (referenciadas en un menú lateral), donde varias personas autorizadas elaboran contenidos de manera asíncrona. Basta pulsar el botón "editar" para acceder a los contenidos y modificarlos. Suelen mantener un archivo histórico de las versiones anteriores y facilitan la realización de copias de seguridad de los contenidos. Hay diversos servidores de wiki gratuitos:
Wikia.
Wetpaint.
Wikipedia, es el ejemplo más conocido de wiki y de creación colaborativa del conocimiento.
Entornos para compartir recursos: Todos estos entornos nos permiten almacenar recursos en Internet, compartirlos y visualizarlos cuando nos convenga desde Internet. Constituyen una inmensa fuente de recursos y lugares donde publicar materiales para su difusión mundial.
Documentos: podemos subir nuestros documentos y compartirlos, embebiéndolos en un Blog o Wiki, enviándolos por correo o enlazándolos a facebook, twiter, etc.
Scribd Sencillo y con recursos muy interesantes.
Calameo
Issuu Con una presentación magnífica.
Vídeos: lugares donde compartimos nuestros vídeos.
Youtube
Universia.tv
MediaCampus (UNAM)
Presentaciones: existen lugares como Youtube pero para subir y compartir tus presentaciones.
Slideshare
Photopeach Más para presentaciones de fotos con música.
Fotos de la web 2.0
Flickr
Plataformas educativas:
Moodle
Webquest: Unidades didácticas interactivas y muy fáciles de crear.

RSS

RSS son las siglas de RDF Site Summary or Rich Site Summary , un formato XML para sindicar o compartir contenido en la web. Se utiliza para difundir información actualizada frecuentemente a usuarios que se han suscrito a la fuente de contenidos. El formato permite distribuir contenidos sin necesidad de un navegador, utilizando un software diseñado para leer estos contenidos RSS (agregador). A pesar de eso, es posible utilizar el mismo navegador para ver los contenidos RSS. Las últimas versiones de los principales navegadores permiten leer los RSS sin necesidad de software adicional. RSS es parte de la familia de los formatos XML desarrollado específicamente para todo tipo de sitios que se actualicen con frecuencia y por medio del cual se puede compartir la información y usarla en otros sitios web o programas. A esto se le conoce como redifusión web o sindicación web (una traducción incorrecta, pero de uso muy común).

Redes Sociales

Las redes sociales son estructuras sociales compuestas de grupos de personas, las cuales están conectadas por uno o varios tipos de relaciones, tales como amistad, parentesco, intereses comunes o que comparten conocimientos.
El análisis de redes sociales estudia esta estructura social aplicando la Teoría de Grafos e identificando las entidades como "nodos" o "vértices" y las relaciones como "enlaces" o "aristas". La estructura del grafo resultante es a menudo muy compleja. Como se ha dicho, puede haber muchos tipos de lazos entre los nodos. La investigación multidisciplinar ha mostrado que las redes sociales operan en muchos niveles, desde las relaciones de parentesco hasta las relaciones de organizaciones a nivel estatal (se habla en este caso de Redes políticas), desempeñando un papel crítico en la determinación de la agenda política y el grado en el cual los individuos o las organizaciones alcanzan sus objetivos o reciben influencias.
En su forma más simple, una red social es un mapa de todos los lazos relevantes entre todos los nodos estudiados. Se habla en este caso de redes "sociocéntricas" o "completas". Otra opción es identificar la red que envuelve a una persona (en los diferentes contextos sociales en los que interactúa); en este caso se habla de "red personal".
La red social también puede ser utilizada para medir el capital social (es decir, el valor que un individuo obtiene de los recursos accesibles a través de su red social). Estos conceptos se muestran, a menudo, en un diagrama donde los nodos son puntos y los lazos, líneas.


Las 10 redes mas populares del 2010 son :


Puesto nº 10 Orkut: La red social que promueve Google
Orkut es una red social desarrollada por uno de los actualmente empleados de Google Orkut Büyükkökten quién obtuvo beneficios de promoción de esa red por parte de Google desde el 2004.
Orkut no es una red social demasiado conocida por los países de habla hispana, sin embargo en países como Brasil, India o Estados unidos es bastante conocida, en especial en los entornos universitarios. Hoy en día cualquiera con una cuenta de Gmail puede registrar en este servicio, sin embargo antes sólo se entraba con una invitación.

Puesto Nº 9: Badoo: “Yo estoy aquí”Badoo nace de la mano de un grupo de jóvenes desarrolladores que querían crear una red social que fuera muy conocida en todo el mundo. Manteniendo la privacidad de usuarios pero a la vez compartiendo lo que la gente quería mostrar al mundo sobre ellos mismos.
Hoy en día es una de las principales redes sociales y uno de los sitios web más reconocidos, sin embargo no alcanza a ser la red social más usada.

Puesto Nº 8 Metroflog: Agregame a tus Favoritos
Metroflog se ha consolidado según el ranking de alexa como uno de los 100 sitios web más visitados en todo el mundo. La red social con sede en Buenos Aires se ha hecho famosa y popular con frases como “agrégame a tus efes” incluso hay gente que ha llegado a ser famosa usando el metroflog, que fue el caso de una adolescente de México que llego a ser muy conocida a través de este medio.
La comunidad de latino América esta catalogada como la que más usa este servicio, en especial en países como México, sin embargo esta red social tiene muchas limitaciones y por eso no ha llegado a ser tan buena como otras.

Puesto Nº 7 Menéame: Noticias al instanteTal vez no se merezca esta posición pero vale mencionar a una de las redes de actualidad más famosas que hay. Meneame es un servicio en el cuál cualquier persona puede enviar una noticia y otros usuarios tienen acceso a calificarla y a comentar sobre esta noticia.
Tal vez el éxito de menéame se debe a que muchos webmasters desean hacerle publicidad a sus sitios web y por medio de esta red social se les puede hacer algo bastante fácil. Claro que en la práctica es todo lo contrario porque la mayoría de éstos son votados negativamente a los pocos segundos y más bien se manda a portada las noticias netamente españolas y alguna que otra noticia sensacionalista.

Puesto Nº 6 MySpace
Una de las redes sociales con más éxito por la capacidad de compartir música, fotos videos y personalizar a fondo nuestro perfil, y que además cuenta con un enorme grupo de desarrollo y actualmente su propietaria es News Corporation que cuenta con más de 300 empleados y una tasa de crecimiento diaria bastante significante.

Puesto Nº 5 Hi5: Tus amigos, tu mundoCatalogada como uno de los 40 sitios más visitados, Hi5 también tiene el respaldo de una enorme empresa, quizá el mayor éxito que ha tenido esta red social son sus aplicaciones, sin embargo otros servicios han llegado a opacar esta enorme red social. Más adelante los veremos.

Puesto Nº 4: Yahoo Respuestas: Pregunta, responde y descubre
Siempre que hacemos una consulta en cualquier buscador uno de los primeros resultados los tiene la Wikipedia, sin embargo otro servicio que salió de la nada y una gran apuesta de cientos de millones de dólares que hizo Yahoo a este proyecto logró consolidarse como uno de los sitios web de “descubrimiento” si se puede decir así que hay. De éste versus entre yahoo respuestas y la wikipedia ya hablamos antes.
Yahoo Answers es un servicio que te permite hacer cualquier tipo de preguntas, según su categoría y cualquier otro usuario puede responder esta pregunta y así mismo otros pueden calificar y elegir la mejor respuesta.
Es sin duda la alternativa a Wikipedia más informal que hay hoy en el mercado de servicios web o redes sociales.

Puesto Nº 3 Twitter: Dilo en 140 caracteres
Qué está pasando, es la nueva pregunta de esta red social, que en apenas unos años pasó de ser un servicio invisible a ser usado casi por cualquier persona. Twitter es el servicio que te permite expresar en tan sólo 140 palabras tu estado actual, tal vez esto es lo que más ha gustado a sus usuarios, la capacidad de ver al instante que es lo que están haciendo otras personas.
Incluso personas en tiempo real escriben en su twitter, como el caso de un hombre que se estaba casando y en plena boda actualizó su estado en Twitter…y Facebook. Por esta razón Twitter esta en el tercer lugar, muy bien merecido.

Puesto Nº 2 Facebook: Comunícate con las personas que más quieresHoy en día ¿quién no tiene un perfil en Facebook?. Sin duda Facebook es la red social que más atrae usuarios, ya que famosos, empresas y personas en general usan este servicio incluso para promocionar sitios y demás.Además el desarrollador de Facebook está dentro de los más ricos del mundo y la verdad no es algo que sorprenda pues puede que éste sea uno de los sitios más visitados en todo el mundo después de Google.

Puesto Nº 1 YouTube: Ser famoso ya!Tal vez el título sea un poco exagerado, pero en realidad se puede decir que cualquier persona puede ser famosa subiendo un video suyo en YouTube, la red social más potente que existe, y decimos que es potente pues de seguro sus servidores requieren de una alta calidad para poder brindar este servicio.
YouTube comprado por Google hace unos años, es la apuesta más grande que hacen las empresas para promocionar sus servicios, grandes personajes como el presidente obama de estados unidos han usado este servicio para promocionar sus servicios obteniendo un índice alto de éxito.

WIKI

Un wiki (o una wiki) (del hawaiano wiki, «rápido» ) es un sitio web cuyas páginas pueden ser editadas por múltiples voluntarios a través del navegador web. Los usuarios pueden crear, modificar o borrar un mismo texto que comparten. Los textos o «páginas wiki» tienen títulos únicos. Si se escribe el título de una «página wiki» en algún lugar del wiki entre dobles corchetes (...), esta palabra se convierte en un «enlace web» a la página wiki.
En una página sobre «alpinismo», por ejemplo, puede haber una palabra como «piolet» o «brújula» que esté marcada como palabra perteneciente a un título de página wiki. La mayor parte de las implementaciones de wikis indican en el URL de la página el propio título de la página wiki (en Wikipedia ocurre así: http://es.wikipedia.org/wiki/Alpinismo), facilitando el uso y comprensibilidad del link fuera del propio sitio web. Además, esto permite formar en muchas ocasiones una coherencia terminológica, generando una ordenación natural del contenido.
La aplicación de mayor peso y a la que le debe su mayor fama hasta el momento ha sido la creación de enciclopedias colectivas, género al que pertenece la Wikipedia. Existen muchas otras aplicaciones más cercanas a la coordinación de informaciones y acciones, o la puesta en común de conocimientos o textos dentro de grupos.
La mayor parte de los wikis actuales conservan un historial de cambios que permite recuperar fácilmente cualquier estado anterior y ver qué usuario hizo cada cambio, lo cual facilita enormemente el mantenimiento conjunto y el control de usuarios destructivos. Habitualmente, sin necesidad de una revisión previa, se actualiza el contenido que muestra la página wiki editada.

Historia
El origen de los wikis está en la comunidad de patrones de diseño, cuyos integrantes los utilizaron para escribir y discutir patrones de programación. El primer WikiWikiWeb fue creado por Ward Cunningham, quien inventó y dio nombre al concepto wiki, y produjo la primera implementación de un servidor WikiWiki para el repositorio de patrones del Portland (Portland Pattern Repository) en 1995. En palabras del propio Cunningham, un wiki es «la base de datos en línea más simple que pueda funcionar» (the simplest online database that could possibly work).El wiki de Ward aún es uno de los sitios wiki más populares.
En enero de 2001, los fundadores del proyecto de enciclopedia Nupedia, Jimbo Wales y Larr Sanger, decidieron utilizar un wiki como base para el proyecto de enciclopedia Wikipedia. Originalmente se usó el software UseMod, pero luego crearon un software propio, MediaWiki, que ha sido adoptado después por muchos otros wikis.
Actualmente, el wiki más grande que existe es la versión en inglés de Wikipedia, seguida por varias otras versiones del proyecto. Los wikis ajenos a Wikipedia son mucho más pequeños y con menor participación de usuarios, generalmente debido al hecho de ser mucho más especializados. Es muy frecuente por ejemplo la creación de wikis para proveer de documentación a programas informáticos, especialmente los desarrollados en software libre.

BLOG

Un blog, o en español también una bitácora, es un sitio web periódicamente actualizado que recopila cronológicamente textos o artículos de uno o varios autores, apareciendo primero el más reciente, donde el autor conserva siempre la libertad de dejar publicado lo que crea pertinente. El nombre bitácora está basado en los cuadernos de bitácora, cuadernos de viaje que se utilizaban en los barcos para relatar el desarrollo del viaje y que se guardaban en la bitácora. Aunque el nombre se ha popularizado en los últimos años a raíz de su utilización en diferentes ámbitos, el cuaderno de trabajo o bitácora ha sido utilizado desde siempre.
Este término inglés blog o weblog proviene de las palabras web y log ('log' en inglés = diario). El término bitácora, en referencia a los antiguos cuadernos de bitácora de los barcos, se utiliza preferentemente cuando el autor escribe sobre su vida propia como si fuese un diario, pero publicado en la web (en línea).


Habitualmente, en cada artículo de un blog, los lectores pueden escribir sus comentarios y el autor darles respuesta, de forma que es posible establecer un diálogo. No obstante es necesario precisar que ésta es una opción que depende de la decisión que tome al respecto el autor del blog, pues las herramientas permiten diseñar blogs en los cuales no todos los internautas -o incluso ninguno- puedan participar agregando comentarios. El uso o tema de cada blog es particular, los hay de tipo: periodístico, empresarial o corporativo, tecnológico, educativo (edublogs), políticos, personales (Contenidos de todo tipo), etc.

lunes 16 de agosto de 2010

Electronica Digital

La electrónica digital es una parte de la electrónica que se encarga de sistemas electrónicos en los cuales la información está codificada en dos únicos estados. A dichos estados se les puede llamar "verdadero" o "falso", o más comúnmente 1 y 0, refiriéndose a que en un circuito electrónico digital hay dos niveles de tensión.
Electrónicamente se les asigna a cada uno un voltaje o rango de voltaje determinado, a los que se les denomina niveles lógicos, típicos en toda señal digital. Por lo regular los valores de voltaje en circuitos electrónicos pueden ir desde 1.5, 3, 5, 9 y 18 voltios dependiendo de la aplicación, así por ejemplo, en una radio de transistores convencional las tensiones de voltaje son por lo regular de 5 y 12 voltios al igual que se utiliza en los discos duros IDE de computadora.
Se diferencia de la electrónica analógica en que, para la electrónica digital un valor de voltaje codifica uno de estos dos estados, mientras que para la electrónica analógica hay una infinidad de estados de información que codificar según el valor del voltaje.
Esta particularidad permite que, usando Álgebra Booleana y un sistema de numeración binario, se puedan realizar complejas operaciones lógicas o aritméticas sobre las señales de entrada, muy costosas de hacer empleando métodos analógicos.
La electrónica digital ha alcanzado una gran importancia debido a que es utilizada para realizar autómatas y por ser la piedra angular de los sistemas microprogramados como son los ordenadores o computadoras.
Los sistemas digitales pueden clasificarse del siguiente modo:

  • Sistemas cableados
  • Combinacionales
  • Secuenciales
  • Memorias
  • Convertidores
  • Sistemas programados
  • Microprocesadores
  • Microcontroladores

Circuitos Electronicos

La electrónica es la rama de la física y especialización de la ingeniería, que estudia y emplea sistemas cuyo funcionamiento se basa en la conducción y el control del flujo microscópico de los electrones u otras partículas cargadas eléctricamente.

Utiliza una gran variedad de conocimientos, materiales y dispositivos, desde los semiconductores hasta las válvulas termoiónicas. El diseño y la construcción de circuitos electrónicos para resolver problemas prácticos forma parte de la electrónica y de los campos de la ingeniería electrónica, electromecánica y la informática en el diseño de software para su control. El estudio de nuevos dispositivos semiconductores y su tecnología se suele considerar una rama de la física, más concretamente en la rama de ingeniería de materiales.

APLICACIONES DE LA ELECTRONICA:

La electrónica desarrolla en la actualidad una gran variedad de tareas. Los principales usos de los circuitos electrónicos son el control, el procesado, la distribución de información, la conversión y la distribución de la energía eléctrica. Estos dos usos implican la creación o la detección de campos electromagnéticos y corrientes eléctricas. Entonces se puede decir que la electrónica abarca en general las siguientes áreas de aplicación:

* Electrónica de control
* Telecomunicaciones
* Electrónica de potencia

HISTORIA:

Se considera que la electrónica comenzó con el diodo de vacío inventado por John Ambrose Fleming en 1904. El funcionamiento de este dispositivo está basado en el efecto Edison. Edison fue el primero que observó en 1883 la emisión termoiónica, al colocar una lámina dentro de una bombilla para evitar el ennegrecimiento que producía en la ampolla de vid

jueves, 2 de septiembre de 2010

6. LOS TRANSISTORES


Es un dispositivo electrónico semiconductor que cumple funciones de amplificador, oscilador, conmutador o rectificador. El término "transistor" es la contracción en inglés de transfer resistor ("resistencia de transferencia"). Actualmente se los encuentra prácticamente en todos los aparatos domésticos de uso diario: radios, televisores, grabadoras, reproductores de audio y video, hornos de microondas, lavadoras, automóviles, equipos de refrigeración, alarmas, relojes de cuarzo, computadoras, calculadoras, impresoras, lámparas fluorescentes, equipos de rayos X, tomógrafos, ecógrafos, reproductores mp3, teléfonos móviles, etc.

El transistor bipolar fue inventado en los Laboratorios Bell de EE. UU. en diciembre de 1947 por John Bardeen, Walter Houser Brattain y William Bradford Shockley, quienes fueron galardonados con el Premio Nobel de Física en 1956. Fue el sustituto de la válvula termoiónica de tres electrodos, o triodo.


Al principio se usaron transistores bipolares y luego se inventaron los denominados transistores de efecto de campo (FET). En los últimos, la corriente entre la fuente y la pérdida (colector) se controla usando un campo eléctrico (salida y pérdida (colector) menores). Por último, apareció el MOSFET (transistor FET de tipo metal-óxido-semiconductor). Los MOSFET permitieron un diseño extremadamente compacto, necesario para los circuitos altamente integrados (IC). Hoy la mayoría de los circuitos se construyen con la denominada tecnología CMOS (semiconductor de óxido metálico complementario). La tecnología CMOS es un diseño con dos diferentes MOSFET (MOSFET de canal n y p), que se complementan mutuamente y consumen muy poca corriente en un funcionamiento sin carga.


El transistor consta de un sustrato (usualmente silicio) y tres partes dopadas artificialmente (contaminadas con materiales específicos en cantidades específicas) que forman dos uniones bipolares, el emisor que emite portadores, el colector que los recibe o recolecta y la tercera, que está intercalada entre las dos primeras, modula el paso de dichos portadores (base). A diferencia de las válvulas, el transistor es un dispositivo controlado por corriente y del que se obtiene corriente amplificada. En el diseño de circuitos a los transistores se les considera un elemento activo, a diferencia de los resistores, capacitores e inductores que son elementos pasivos. Su funcionamiento sólo puede explicarse mediante mecánica cuántica.


De manera simplificada, la corriente que circula por el "colector" es función amplificada de la que se inyecta en el "emisor", pero el transistor sólo gradúa la corriente que circula a través de sí mismo, si desde una fuente de corriente continua se alimenta la "base" para que circule la carga por el "colector", según el tipo de circuito que se utilice. El factor de amplificación o ganancia logrado entre corriente de base y corriente de colector, se denomina Beta del transistor. Otros parámetros a tener en cuenta y que son particulares de cada tipo de transistor son: Tensiones de ruptura de Colector Emisor, de Base Emisor, de Colector Base, Potencia Máxima, disipación de calor, frecuencia de trabajo, y varias tablas donde se grafican los distintos parámetros tales como corriente de base, tensión Colector Emisor, tensión Base Emisor, corriente de Emisor, etc. Los tres tipos de esquemas(configuraciones) básicos para utilización analógica de los transistores son emisor común, colector común y base común.

Modelos posteriores al transistor descrito, el transistor bipolar (transistores FET, MOSFET, JFET, CMOS, VMOS, etc.) no utilizan la corriente que se inyecta en el terminal de "base" para modular la corriente de emisor o colector, sino la tensión presente en el terminal de puerta o reja de control y gradúa la conductancia del canal entre los terminales de Fuente y Drenador. De este modo, la corriente de salida en la carga conectada al Drenador (D) será función amplificada de la Tensión presente entre la Puerta (Gate) y Fuente (Source). Su funcionamiento es análogo al del triodo, con la salvedad que en el triodo los equivalentes a Puerta, Drenador y Fuente son Reja, Placa y Cátodo.


Los transistores de efecto de campo, son los que han permitido la integración a gran escala que disfrutamos hoy en día, para tener una idea aproximada pueden fabricarse varios miles de transistores interconectados por centímetro cuadrado y en varias capas superpuestas.